回归分析缺点
精选回答
回归分析缺点:
算法相对简单。
回归分析法的优点:
分析多因素模型时,更加简单和方便;
运用回归模型,采用模型与数据相同,可以计算出唯一的结果,
回归分析可以准确地计量各个因素之间的相关程度。
回归分析是统计学上分析数据的方法,目的在于了解两个或多个变量之间是否相关、通过相关方向与强度,建立数学模型观察特定变量用来预测变量。
回归分析与相关分析的区别:
1、定义不同
相关分析研究变量之间相关的方向和相关的程度。但是相关分析不能指出变量间相互关系的具体形式,也无法从一个变量的变化来推测另一个变量的变化情况。
回归分析则是研究变量之间相互关系的具体形式,它对具有相关关系的变量之间的数量联系进行测定,确定一个相关的数学方程式,根据这个数学方程式可以从已知量来推测未知量,从而为估算和预测提供了一个重要的方法。
2、研究目的不同
若仅仅为了了解两变量之间呈直线关系的密切程度和方向,选用相关分析;若仅仅为了建立由自变量推算因变量的直线回归方程,选用回归分析。
3、变量不同
相关分析中所有的变量都必须是随机变量;回归分析中,自变量是确定的,因变量是随机的。
回归分析和相关分析的联系:
相关分析是回归分析的基础和前提,回归分析是相关分析的深入和延续。二者有共同的研究对象,在具体应用时,常常必须互相补充。相关分析需要依靠回归分析来表明现象数量相关的具体形式,而回归分析则需要依靠相关分析来表明现象数量变化的相关程度。只有当变量之间存在着高度相关时,进行回归分析寻求其相关的具体形式才有意义。
了解更多会计考试资讯、知识点,可以点击查看东奥CMA频道。